MODELO DE RESPUESTAS

OBJ 5 PTA 1
Determine si el campo vectorial
\[F(x, y, z) = (x, e^y \sin(z), e^y \cos(z)) \]
es conservativo. Si lo es, encuentre la función \(f \) tal que \(F = \nabla f \).

Solución:
Calculemos el rotor del campo vectorial \(F \)
\[\text{rot}(F) = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & e^y \sin z & e^y \cos z \end{vmatrix} = (e^y \cos(z) - e^y \cos(z), 0, 0) = (0,0,0) \]
Como \(\text{rot}(F) = 0 \), \(F \) está definida en todo \(\mathbb{R}^3 \) y las derivadas parciales de las componentes de la función \(F \) son continuas, entonces \(F \) es decir conservativo. Así que existe una función potencial \(\phi \) tal que \(\nabla \phi = F \). Tomemos el punto \((0,0,0) \), y definamos la función potencial \(\phi \) como sigue:
\[\phi(x,y,z) = \int_{0}^{x} F_1(u,0,0) du + \int_{0}^{y} F_2(x,u,0) du + \int_{0}^{z} F_3(x,y,u) du \]
\[= \int_{0}^{x} u du + \int_{0}^{y} 0 du + \int_{0}^{z} e^y \cos(u) du = \frac{x^2}{2} + e^y \sin(z) \]

OBJ 6 PTA 2
Calcule la integral de línea
\[\int_C y^2 \, dx + x \, dy, \]
donde C es el arco de la parábola \(x = 4 - y^2 \) de \((-5, -3)\) a \((0, 2)\).

Solución:

Parametrizamos la curva C como sigue:

\[
\begin{align*}
C: \quad & \begin{cases}
 x = 4 - t^2 \\
 y = t
\end{cases} ; \quad \text{para } t \in [-3, 2].
\end{align*}
\]

Luego:

\[
\int_C y^2 \, dx + x \, dy = \int_{-3}^{2} \left[-2t^3 - t^2 + 4 \right] \, dt = -\frac{t^4}{4} \bigg|_{-3}^{2} - \frac{t^3}{3} \bigg|_{-3}^{2} + 4t \bigg|_{-3}^{2} =
\]

\[
= \frac{295}{12}.
\]

OBJ 7 PTA 3

Calcule la siguiente integral

\[
\int \int_{R} 2y^2 \, \text{sen}(x \, y) \, dy \, dx,
\]

Solución: Grafiquemos la región de integración.

En virtud de que los cálculos con respecto a la variable y son muy extenso podemos integrar primero con respecto a la variable x y luego integramos con respecto a la variable y,

\[
\int_{0}^{2} \int_{x}^{2} 2y^2 \, \text{sen}(x \, y) \, dy \, dx = \int_{0}^{2} \int_{0}^{y} 2y^2 \, \text{sen}(x \, y) \, dx \, dy = -\int_{0}^{2} 2y^2 \, \text{cos}(xy) \bigg|_{0}^{y} dy
\]
OBJ 8 PTA 4
Calcule el área del plano $x + y + z = 1$, de la parte acotada por los planos Oxy, Ozy y Oxz.

Solución:
Una representación vectorial de la superficie a la cual queremos calcular el área es:

$$\mathbf{r}(x, y) = (x, y, z) = (x, y, 1-x-y), \text{ con } (x, y) \in D,$$

donde $D = \{(x, y) \in \mathbb{R}^2 */ 0 \leq y \leq 1-x, 0 \leq x \leq 1 \}$.

Por lo tanto

$$\frac{\partial \mathbf{r}}{\partial x}(x, y) = (1, 0, -1) \quad \frac{\partial \mathbf{r}}{\partial y}(x, y) = (0, 1, -1),$$

luego

$$\mathbf{N} = \left(\frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} \right)(x, y) = (1, 1, 1)$$

y así obtenemos:

$$a(S) = \int_{0}^{1} \int_{0}^{1-x} \sqrt{3} \, dy \, dx = \frac{\sqrt{3}}{2}.$$